a Enterec- - . J'[LE P,Dp‘

3}1 P A(:] E ' READ INSTRUCTIONS

7 7 9 o BEFORE COMPLETEING FORM
T AD—A204 |2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
4

. 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Honeywell 8 June 1988 to 8 June 1988

Bull, GCOS 8 Ada Compiler, Version 2.1, DPS 8000, "~ *
: r ’ ’ 8. PERFORM :

DPS 8/70, DPS 90 (Host) DPS 8000, 8/70, 90 (Target) PERFO I:G'ORG REPORT MUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards
Gaithersburg, MD

9. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards
Gaithersburg, MD

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada nggt Program Office £ £

Unite tates Department of Defense hr—oweror—

Washington, DC 20301-3081 - NORBER P PRRES

14. MONITORING AGENCY NAME & ADORESS(/f different from Controlling Office) 15. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

National Bureau of Standards
Gaithersburg, MD

15s. gEgksaEyXCATION/DOHNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstractentered nBlock 20 If different from Report)

UNCLASSIFIED

DTIC

FEB 0 71989

“H

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO '

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue onreverse side f necessary and identify by block number)

e

20. ABSTRACT (Continue on reverse side if necessary and dentify by block number)

GCOS 8 Ada Compiler, Version 2.1, Honeywell Bull, NBS, DPS 8000, 8/70, 90 under GCOS 8,
SR3000 ('lost) to Ppg 8000, 8/70, under GCOS'8, SR3000 (Target), ACVC 1.9

L
DD YU 1473 €DITION OF 1 NOvV 65 IS OBSOLETE

1 Jan 73 S/N 0102-LF-014-8601 UNCLASSIFIED
SECURLTY CLASSIFICATION OF THIS PAGE (when Dats Entered)

89 < o© U400
;—.—-—_

AVF Cciitrol Number: NBS88VHFSS05

Ada Camiler Xt

VALIDATION SCMMARY REPCRT:
Cartificate Number: 8806C8S1.09144
Honeywell Bull
GO0S 3 Ada Campiler, Version 2.1
DPS 8000, DPS 8/70, DPS 90

Ccrpleticn of On-Site Testing:

8 Jure 1988
Prepared Bv:

Software Standards Validaticn Group
nstitute for Coamputer Sciences and Technelogy
Naticnal Bureau of Standards
Building 225, -Room A266
Gaithersburg, Maryland 2C899

Prepared For:
Ada Jeint Program Office
United States Departhment cf Tefense
Wasnirgton, D.C. 20201-3081

Ada Compiler Validation Summary Report:

Campiler Name: GOOS 8 Ada Campiler, Version 2.1

Certificate Number: 880608S1.09144

Host: Target:
DPS 8000, 8/70, 90 under DPS 8000, 8/70, 90 under
GCos 8 GCoS 8
SR3000 SR3000

Testing Completed 8 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

N\

Ada Validation Fac:.l"ity

Dr. David K. Jefferson
Chief, Information Systems
Emgineering Division
National Bureau of Standards
Gaithersburg, MD 20899

A —

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexardria, VA 22311

A oA
Ada Joint Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

L) e ® ®
NNNNOAULeEWN

WWWWwWWwWWwWwWwwWw
N

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

wN P

TABIE OF CONTENTS

INTRODUCTION

PURPCSE OF THIS VALIDATION SUMMARY REPORT 1-2
USE OF THIS VALIDATION SUMMARY REPFORT . . « . . « 1-2
REFERENCES . . ¢ ¢« ¢ ¢ ¢ o o« ¢ o s o « s ¢ o o o » 1=3
DEFINITIONOF TERMS . . ¢ ¢ ¢ ¢ ¢ o o ¢ o s ¢ o « 1=3
ACVCTESTCIASSES . & ¢ ¢ ¢ o ¢ o o s o s o o« « » 1-4

CONFIGURATION INFOURMATION

TEST INFORMATION

TESTRESUITS . ¢ ¢ « ¢« ¢ « o « o« o o o o o ¢« » o & 3-1
SUMMARY OF TEST RESUITS BY CIASS 31
SUMMARY OF TEST RESULTS BY CHAPTER « +» « « « « « o 3-2
WITHORAWN TESTS . ¢ ¢ ¢ ¢ o o o o o o o o o s o « 372
INAPPLICABIE TESTS . . .« ¢ « v ¢ ¢ & & o o o o o 372

TEST, PROCESSING, AND EVALUATION PDDIFICATIONS e o 3-4
ADDITIONAL TESTING INFORMATION . . ¢« ¢« « ¢« ¢« « +» « 3-5
Prevalidation ¢« ¢« & ¢ ¢« ¢« ¢ ¢ ¢« « « « 3=5
Test Method . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ o ¢ o o ¢« s o « 3-5
Test Site . &« & ¢ ¢« 4 ¢ 0 ¢ o o o o o o o o . 3-5

CONFORMANCE STATEMENT

DTG

APPENDIX F OF THE Ada STANDARD

o0PY
INSPECTED

[

TEST PARAMETERS

' Accession For

WITHDRAWN TESTS NTIS GRA&I g
DTIC TaA®]
Upan.iounced 1
Just i, AR

Bv_]

FDi_.t.ribut) cny L
Avallabhility C”r*\

r P T Cleaas vt

Spsetal

This Validation Summary Reportf‘(VSR) describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MIL~STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this campiler using the Ada Campiler
Validation Capability A€¥€Y. An Ada camiler must be implemented
according to the Ada Standard, and any implementation-dependent features
mist conform to the requirements of the Ada Standard. The Ada Stardard
mist be implemented in its entirety, and nothing can be implemented that
is not in the Standanl./

" Even though all validated Ada campilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits same implementation
deperdencies——for example, the maximm length of identifiers or the
maximm values of integer types. Other differences between campilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the deperdencies abserved
during the process of testing this campiler are given in this report.

~ This information in this report is derived fram the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
campiler and evaluating the results. The purpose of validating is to
ensure conformity of the campiler to the Ada Standard by testing that
the camwpiler properly implements legal language constructs and that it
identifies amd rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at campile time, at link time, and during
execution.

1.1 PURPCSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada campiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the campiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this camwpiler was conducted by the National Bureau of
Stardards according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was campleted 8 June
1988, at Honeywell Bull Corporation, Phoenix, Arizona.

1.2 USE OF THIS VALIDATION SUMMARY REFORT

Consistent with the national laws of the originating country, the Avo
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedam of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the camputers, operating systems, and campiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and camplete, or that the subject campiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSCRE

The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or fram:

Software Standards Validation Group

Institute for Camputer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexardria VA 22311

1.3 REFERENCES
1. Reference Marual for th

ANSI/MI1~STD-1815A, February 1983 and ISO 8652—1987

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 Jamuary 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Campiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada camwpiler to
the Ada programming language.

Ada Cammentary An Ada Cammentary contains all information relevant to
the point addressed by a camment on the Ada Standard.
These caments are given a unique identification mumber
having the form AI-ddddd.

Ada Standard ANSI/MI1~STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting campiler validations according to procedures
contained in the Ada Campiler Validation Procedures and

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
campilers. The AW provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Campiler A processor for the Ada language. In the context of
this report, a campiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The camputer on which the campiler resides.

Inapplicable An ACVC test that uses features of the language that a

test campiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

lLanguage The Language Maintenance Panel (IMP) is a camnittee

Maintenance established by the Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MIT~STD for Ada.

Passed test An ACVC test for which a campiler generates the expected

result.
Target The canputer for which a campiler generates code.
Test An Ada program that checks a canpiler's conformity

regarding a particular feature or a cambination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may camprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect
because it has an invalid test dbjective, fails to meet
its test dbjective, or contains illegal or errcnecus use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, anrd L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
capilation errors. Class L tests are expected to produce campilation
or link errors.

Class A tests check that legal Ada programs can be successfully campiled
and executed. There are no explicit program camponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of ancther language (cother than those already reserved in
the Ada language) are not treated as reserved words by an Ada campiler.
A Qlass A test is passed if no errors are detected at campile time arnd
the program executes to produce a PASSED message.

Class B tests check that a camiler detects illegal language usage.
Class B tests are not executable. Each test in this class is campiled
and the resulting campilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
canpiler.

Class C tests check that legal Ada programs can be correctly campiled
and executed. Each Class C test is self-checking amd produces a PASSED,
FAITFED, or NOT APPLICABLE message irdicating the result when it is
executed.,

Class D tests check the campilation and execution capacities of a
campiler. Since there are no capacity requirements placed on a campiler
by the Ada Standard for same parameters—for example, the mumber of
identifiers permitted in a campilation or the mumber of units in a
library~—a campiler may refuse to campile a Class D test and still be a
conforming campiler. Therefore, if a Class D test fails to campile
because the capacity of the campiler is exceeded, the test is classified
as inapplicable. If a Class D test cawiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABIE,
PASSED, or FAILED message when it is campiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
sane features addressed by Class E tests during campilation. Therefore,
a Class E test is passed by a campiler if it is campiled successfully
and executes to produce a PASSED message, or if it is rejected by the
campiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately campiled units are detected and not allowed to
execute. Class L tests are campiled separately and execution is
attempted. A Class L test passes if it is rejected at link time—that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REFORT provides the mechanism by which executable tests report PASSED,
FAIIED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat same campiler optimizations allowed by the Ada
Standard that would circumvent a test abjective. The procedure CHECK
FIIE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REPORT and CHECK FIIE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modificatiaon.
For example, the tests make use of only the basic set of 55 characters,
cantain lines with a maximm length of 72 characters, use small mumeric
values, and place featwres that may not be supported by all
implementations in separate tests. However, same tests contain values
that require the test to be customized according to
implementation-specific values—for example, an illegal file name. A
list of the values used for this validation is provided in Apperdix C.

A campiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an ixtplementation
is considered each time the mplementatlon is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a

validation. Any test that was determined to contain an
illeqal lamguage construct or an erronecus language construct is
withdrawn fram the ACVC and, therefore, is mot used in testing a
campiler. The tests withdrawn at the time of validation are given in

Apperdix D.

CHAPTER 2

CONFIGURATICH INFTRMATION

2.1 CONFIGURATION TESTED

The cardidate corpilaticn system for this validaticn was tested under

the following configuraticn:

Copiler: GCCS 3 Ada Campiler,

ACJ/C Versicn: 1.9
Certificate Nuoer:
Hest Compuater:

Machire:

OCperating System:

Memcry Size:

Tarzet Corputer:

Machire:

Cperating System:

Memory/ Size:

Cormunicaticns Netwsork:

[,9]
t
o

Versicn 2.1

380608S1.09144

DPS 8000, 8/70, 90

GCCS 8
SR3000

each machine has 22 Megawcrss

DPS 8000, 8/70, 90

GOCS 8
SR20C0

each machine has 32 Megawords

nore used

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating campilers is to determine the behavior
of a campiler in those areas of the Ada Standard that pemmit
implementations to differ. Class D ard E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The camwpiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately campiled as subunits
nested to 17 levels. It correctly processes a c<anpilation
containing 723 variables in the same declarative part. (See
test D5SAO03A..H (8 tests), D56001B, D6400SE..G (3 tests), and
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4A002B, D4AOO4A, and D4AQO4B.)

Predefined types.
This implementation supports the additional predefined types

LONG_INTBGER, IONG FLOAT, and in the package STANDARD. (See
tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during campilation, or it may
raise NUMERIC ERROR or (DNSI‘RAINI‘ ERROR during execution. This
implementation raises NUMERIC. . ERROR during execution. (See
test E24101A.)

- Expression evaluation.
Apparently all default initialization expressions or record

2-2

camponents are evaluated before any value is checked to belong
to a caponent's subtype. (See test C32117A.)

Assigrments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERIC ERROR is raised when an integer literal
operarnd in a camparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC FRROR is raised when a literal operard in a
fixed~point camparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests CA45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round away
fram zero. (See tests C46012A..2.)

The method used for rounding to longest integer is apparently
rourd away fram zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away fram zero. (See test
CAAO14A.)

- Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration ‘with more
than SYSTEM.MAX INT camponents raises CONSTRAINT ERRCOR. (See
test C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTBGER'IAST + 2 camponents. (See test C36202A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX INT + 2 camponents. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTBGER'LAST
raises NUMERIC ERRCR when the array dbjects are declared. (See
test CS2103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'IAST camponents raises NUMERIC ERROR when the array
cbjects are declarad. (See test CS2104Y.)

A mll array with one dimension of length greater than
INTEGER'IAST may raise NUMERIC ERROR or CONSTRAINT ERRCR either
when declared or assigned. Altematlvely, an mplemem:atlm may
accept the declaration. However, lengths must match in array
slice assigrments. This implementation raises NUMERIC ERROR
when the array type is declared. (See test ES2103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype In assigning
two—dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is campatible
with the target's subtype. (See test CS52013A.)

- Discriminated types.

During campilation, an implementation is allowed to either
accept or reject an incamplete type with discriminants that is
used in an access type definition with a campatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
campatible with the target's subtype. (See test CS52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test EA3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bourd in a nonmull range of a nonmill aggregate does not belong
to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by same of the tests. If a
representation clause is not supported, then the implementation
mist reject it.

Emumeration representation clauses oontaining noncontiquous
values for emmeration types cother than character and boolean
types are supported. (See tests (C35502I..J, C35502M..N, ard
A39005F.)

Enmmeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C355071..J, C35507M..N, and CS5Bl16A.)

Emumeration representation clauses for boolean types containing
representational values other than (FAISE => 0, TRUE => 1) are
not supported. (See tests C35508I..J ard C35508M..N.)

ILength clauses with SIZE specifications for emmeration types
are not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

length clauses with SMALL specifications are not supported.
(See tests A3900SE and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are not supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests ILA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL IO can be instantiated with unconstrained
array types and record types with discriminants without

2-5

defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO camnot be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

There are strings which are illegal extermnal file names for
SEQUENTTIAL IO and DIRECT _IO. (See tests CE2102C and CE2102H.)

Modes IN FIIE and OUT FIIE are supported for SEQUENTIAL IO.
(See tests CE2102D and CE2102E.)

Modes 1IN FIIE, OUT _FIIE, and INOUT FIIE are supported for
DIRECT IO. (See tests CE21C2F, CE21021, and CE21027.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT IO.
(See tests CE2102G ard CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTTAL IO and DIRECT _IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FIIE mode, can be

created in OUT_FILE mode, and can be created in IN_FIIE mode.
(See test EE3102C.)

Temporary sequestial files are not given names. Temporary
direct files are not given names. (See test CE2108A ard

CE2108C.)

- Generics.

Generic subprogram declarations and bodies cannot campiled in
separate campilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies cannot be campiled in
separate campilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be campiled in
separate campilations. (See test CA3011A.)

CHAPTER 3
TEST INFORMATICN

3.1 TEST RESUITS

Version 1.9 of the ACVC cawprises 3122 tests. When this camwpiler was
tested, 28 tests had been withdrawn because of test errors. The AVF
determined that 231 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Mcdifications to the code, processing, or grading for 68 tests (72
files) were required to successfully demonstrate the test dbjective.
(See section 3.6.)

The AVF cancludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CIASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 106 1046 1632 17 16 46 2863
Inapplicable 4 5 221 0 1 0 231
Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
—2_3_4_5_6_7_8_9 10 11 12 13 14 __
Passed 192 503 561 245 165 98 140 326 135 36 232 3 227 2863

Inapplicable 12 69113 3 0 O 3 1 2 0 2 0 26 231
Withdrawn 2 14 3 0 1 1 2 O O O 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C372137 C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87B04B CC1311B
BC3105A AD1AO1A CE2401H CE3208A

See Apperdix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABIE TESTS

Same tests do not apply to all camwpilers because they make use of
features that a campiler is not required by the Ada Standard to support.
Others may depend on the result of ancther test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 231
test were inapplicable for the reasons indicated:

C35508I..7 (2 tests) and C35508M..N (2 tests) use emumeration
representation clauses for boolean types containing representational
values other than (FAISE => 0, TRUE => 1). These clauses are not
supported by this campiler.

C35702A uses SHORT FLOAT which is not supported by this implementation.

3-2

“

A39005B and C87B62A use lerngth clauses with SIZE specifications for
derived integer types or for emmeration types which are not supported
by this campiler.

A39005E and C87B62C use length clauses with SMALL specifications which
are not supported by this implementation.

A39005G uses a record representation clause which is not supported by
this campiler.

The follcwing (14) tests use SHORT INTEGER, which is not supported by
this campiler.

C45231B C453048 C45502B C45503B C45504B
CA5504E C45611B C45613B C45614B CA5631B
C45632B BS2004E CS5B07B BS5B0SD

C45231D requires a macro substitution for any predefined rumeric types
cther than INTBEGER, SHORT INTEGER, LONG_ INTEGER, FLOAT, SHORT FLOAT, and
LONG_FIOAT. This campiler does not support any such types.

CAAO13B uses a static value that is outside the range of the most
accurate floating-point base type. The declaration was rejected at
canpile time.

B86001D requires a predefined mumeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
inplementation.

C96005B requires the range of type DURATION to be different from those
of its base type:; in this implementation they are the same.

CA2009C requires a generic non-library package body be campiled as a
subunit in a separate file fram its specification. This implementation
is not supported.

CA2009F requires a generic non-library subprogram body be campiled as a
subunit in a separate file fram its specification. This implementation
is not supported.

BC3204C and BC3205D require a generic library package body be campiled
in a different file from its specification. This implementation is not
supported.

AE2101H and EE2401D use instantiations of package DIRECT IO with
unconstrained array types. These instantiations are rejected by this
campiler.

CE2105A and CE3109A attempt to CREATE files with mode IN FILE; this
implementation does not support such an operation.

CE2107A..I (9 tests), CE2110B, CE2111D, CE2111H, CE3111A..E (5 tests),

3-3

CE3114B, and CE3115A are inapplicable because multiple internal files
cannot be associated with the same external file. The proper exception
is raised when multiple access is attempted.

CE2108A, CE2108C and CE3112A require names for temport files; this
implementation does not give temporary files names.

The following 173 tests reguire a floating-point accuracy that exceeds
the raximm of 17 digits supported by this implementation:

C24113N..Y (12 tests) C35705N. .Y (12 tests)
C35706N..Y (12 tests) C35707N..Y (12 tests)
C35708N..Y (12 tests) C35802N..Z (13 tests)
C45241IN..Y (12 tests) CA5321IN..Y (12 tests)
CAS421IN..Y (12 tests) CAS521N..Z (13 tests)
C45524N..Z (13 tests) C45621IN..Z (13 tests)
CAS641IN..Y (12 tests) C46012N..Z (13 tests)

3.6 TEST, PROCESSING, AND EVAILUATION MODIFICATIONS

It is expected that same tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
campletion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a oollection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of ancother).

Modifications were required for 68 Class B tests (72 files).

The following Class B tests were split because syntax errors at one
point resulted in the campiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D
B29001A B2AOO3A B2A003B B2A0OO3C B3330l1A
B35101A B37106A B37301A B37302A B38003A
B38003B B3800SA B38009B BS1001A BS3009A
B54A01C BS4A01LY BSSAO1A B61001C B61001D
B61001F B61001H B61001I B6100IM B61001R
B61001W B67001A B67001C B67001D B9100l1A
B91002A..L (12 tests) B9S030A B9S061A
B95061F B95061G B95077A B97101A B97101E
B97102A B97103E B97104G BA1101B0..4 (5 tests)
BC1109A BCl1109C BCl109D BCl1l202A BCl1202B
BC1202E BCl1202F BC1202G BC2001D BC20QlE

3-4

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the GOOS 8 Ada Campiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the campiler exhibited the
expected behavicr on all inapplicable tests.

3.7.2 Test Method

Testing of the GOOS 8 Ada Campiler using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted
of a DPS 8000, DPS 8/70 and DPS 90 host operating under GOOS 8, Version
SR30000 and a DPS 8000, DPS 8/70 and DPS 90 target operating under GOOS
8, Versian SR3000.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were custcamized on-site after the
magnetic tape was loaded. Tests requiring modifications during the
prevalidation testing were not included in their modified form on the
magnetic tape. The contents of the magnetic tape were loaded directly
onto the host camputer.

After the test files were loaded to disk, the full set of tests was
capiled and linked on the DPS 8000, DPS 8/70 and DPS 90, and all
executable tests were run on the same system. Object files were linked
on the host camputer, and executable images were run on the same system.

The canpiler was tested using command scripts provided by Honeywell Bull
Corporation and reviewed by the validation team. The compiler was
tested using all default option settings without exception.

Tests were camwpiled, linked, and executed as appropriate using a single
host camputer and a single target camputer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Honeywell Bull, Phoenix, Arizona and was
campleted on 8 June 1988.

APPENDIX A

DECLARATION OF CONFORMANCE

Compliance Starcment

Base Configuration:
Compiler: GCOS 8 Ada Compiler, Version 2.1

Test Suite: Ada Compiler Validation Capability, Version 1.9

Host Computer:
Machines: DPS 8000, DPS 8/70, DPS 90
Operating System: GCOS 8, Version SR3000
Target Computer:
Machines: DPS 8000, DPS 8/70, DPS 90
Operating System: GCOS 8, Version SR3000

Honeywell Bull Inc. has made no deliberate extensions to the Ada Language Standard.
Honeywell Bull Inc. agrees to the public disclosure of this report.

Honeywell Bull Inc. agrees to continue to comply with the Ada trademark policy, as defined by the Ada Joint
Program Office.

Z Podirand &«w Daw: b (9, 1367

Honeywell Bull Inc.
R. Edward Kearns, Manager
Advanced Compiler Development

22

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspand to
implementation-dependent pragmas, to certain machine-deperndent
conventions as mentioned in chapter 13 of the Ada Standard, ard to
certain allowed restrictions on representation clauses. The
implementation—dependent characteristics of the GOOS 8 Ada Campiler,
Version 2.1 are described in the following sections which discuss topics
in Apperdix F of the Ada Standard. Implementation- specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -34359738368 .. 34359738367;

type LONG_INTEGER is range -2361183241434822606848 ..
2361183241434822606847;

type FLOAT is digits 6 range -16#0.1#E128 ..
16#0.FFFFFFE#E127;

type LONG FIOAT is digits 17 range -16#0.1#E128 ..
1640.FFFF_FFFF_FFFF_FFFE#E127;

type DURATION is delta 0.000016 range -1099511627776.0 ..
775.99999904632568359375;

end STANDARD;

APPENDIX F OF THE Ada STANDARD

B~1

APPENDIX F

IMPLEMENTATION-DEPENDENT
CHARACTERISTICS

This appendix describes the implementation-dependent ch v@ of the GCOS 8§ Ada
Compiler. This is the Appendix F referred to in the Ada Réfere ual.

o Implementaton-Dependent Pragmas
o Package SYSTEM
o0 Restrictions on Representation Clauses v

- Type Representation Clauses
- Address Clauses

o Unchecked Conversion
o Input/Output

- Introduction
- Implementation ices

- Form Parame
Topics (1), (3), (4), gzﬁn\gﬁ’ given in the Appendix F frame of the Ada Reference Manual
scu
trib

(ANSI/MIL-STD-1815 sed below. Topics (2) and (5) are not relevant since

implcmcnmtionndependgl)t\).H‘ and implementation-generated names for implementation-
dependent components are no y ported by the compiler.

Implementation-Dependent Pragmas

See Secton 4 for a description of the implementation-dependent pragmas,
SINGLE_SEGMENT_DATA, MULTI_SEGMENT_DATA, and INTERFACE_SPELLING.

F-1 6/17/88 DY76-00

Package SYSTEM

See Appendix E for a listing of the package specification for SYSTEM.

Restrictions on Representation Chauses

e

Type Representation Clauses

In general, no type representation clauses may be given foé%i:‘%pc. The type representation
clauses that are accepted for non-derived types are described in Ving:
Length Clause \

The compiler accepts only length clauses that specif} numér of storage units to be reserved for
a collecton and the number of storage units to be reserved for an activation of a task.

Enumeration Represét\a}mn_glause

Enumeration representation clauses m2y spevify representations only in the range of the predefined
tvpe INTEGER.

Record Reg@n Clause

Alignment clauses are m@& A component clause is allowed if, and only if, either of these

staterpents is true:
o The component type is a discrete type different from LONG_INTEGER.

o The component type is an array type with a discrete element type different from
LONG_INTEGER. ,

F-2 6/17/88 DY76-00

No component clause is allowed if the component type is not covered by the above two inclusions.
If the record type contains components not covered by a component clause, they are allocated
consecutively after the component with the highest AT value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler. The size of a componciit (or the
size of each element of a component if the component is an array) must be 1, 6, 9, 18, or 36 bits.

No names denoting implementation-dependent components are generated.

Address Clauses

Not supported.

Unchecked Conversion

Unchecked conversion is allowed only between values of the samc>ue/. In this context the size of
an array is equal to that of two access values and ize of a packed array is equal to that of two
access values and an integer. :

Input/Output

)

tax and semantics of the Ada language are not permitted, certain
of the basic input/output system are visible to the Ada
uding the operation of the FORM parameter, are documented

Introduction

Although variations from th
choices made in the imp} tat

programmer. These chqjces, i
here. Z\t
Other implementation choices affi

system and are documented i

) the basic file mapping and the interfaces to the operating
ton 4.

F-3 6/17/88 DY76-00

_

Implementation Choices

o Anattempt to CREATE an IN_FILE will raise USE_ERROR.
o ARESET to OUT_FILE, on a sequential or text file, empties the file.

o Two intemnal files may not be associated with the same external file si

o Temporary files accessed by a batch program are not named. Usg of the function NAME
results in a USE_ERROR.

An attempt to open a ‘busy’ file will result in the I/O exception, STATU _;RROR.

Form Parameter

The FORM parameter can be the concatenation of any of the following strings separated by spaces:

"~FILCOD XX" This associates the intern with the external file designated by file code
XX where XX is a valid faikfeﬁ.’&to?hup ied by JCL. A file code takes
precedence over a NAME strigy: &Eﬂﬁe P* is treated specially. Itis
written as media code 7 (ASC t)and report code 73. Any horizontal
tab character (HT, ASCII 9) is ¢dnverted to a space. A single space control
is appended to the end of every . A page eject is placed at the end of

‘every page?. Theserontrol characters must be taken into account if a disk

file is to bz}ea
"-MEDCOD N" This specifiesithe acwde of the external file where N is a valid media
code.

"-APPEND" Tbi@)éappﬁcab e to sequential and text files; it results in a
ISE_ERR P\\ if it is applied to direct files. On opening a file with mode
i

Zn _FIL\E< specifies positioning at end-of-file so that writes will append
therthan dverwrite the file. It has no effect on creates or on opening files
w1

t

ﬁwﬁ_mE.

I The space control sequence is a vertical tab character (VT, ASCII 11) followed by a byte (character) containing a
decimal 1.

2 The page eject sequence is a form feed character (FF, ASCII 12) followed by a byte (character) conwining a
decimal 0.

F-4 6/17/38 DY76-00

Pragma C=0LNT£R OLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point
allowed by the pragma.

Pragma ELABORATE

As in Ada Reference Marnual. /

Pragma INLINE ~

This pragma is obeyed by the compiler whenever possible.
subprogram name, the INLINE pragma has an effect on a]
that appear in the same declarative part as the pragma.

he Srgument is an overloaded
with the specified name

Pragma INLINE causes inline expansion, except in the following ca

found (this also covers recursive calls).

o The whole body of the subprogram for whyc 'nliu%nsion is requested has not been

o The subprogram call appears in an expression {{ whith a conformance check may be
applied; for exumple, in a subprogram specﬁcav, in a discriminant part, or in a formal
part of an entry declaration or ccp(staterment.

A warning is given if inline expan o is of—achxc.\ue.d

Pragma INTERFA C;J

This pragma is supponcd for suborowrams written in other languages. The languages supported

by this interface are, ,CQ?O -85,C, and GMAPV assembly lanvuave There are two forms of the

GMAPV interface: The figst form fcylows the calling convention of COBOL-85 and C. The second

form follows the calling con emron of Ada. (Funher information about the assembly language

conventions can be found elsewhére in this chapter.) The language names used in the pragma are
"COBOL_85", "C", "GMAPVY, and "GMAPV_ADA", res"ecu‘(cly

The subprogram name must be a legal Ada identifier, and it represents the name of the foreign
subprogram. If the foreign subprogram name is not a legal Ada identifier, the pragma
INTERFACE_SPELLING (see definition below) must be used.
Example:

pragma INTERFACE(COBOL_85, sort);

This example designates a subprogram, whose externally-known name is “sort", which will be
invoked via the COBOL-85 calling convention.

Implementation Details 4.6 6/17/88 DY76-01

There are some restrictions which apply to foreign subprograms which use the COBOL-85 and C
calling convention:

+ The subprogram must be a procedure and not a function. Function return values are not
supported.

+ Neither COBOL-835 nor C subprograms support the Ada parameter mode OUT. To
achieve the desired result, it is necessary to use properly-declared access types. Parameters
to foreign subprograms in these languages should be of mode IN. ItJs possible for a
GMAPYV subprogram to handle OUT (or IN OUT) parameters (wi ful coding).

« No conversion of parameters is performed by the Ada compiler/it i)
parameter types be compatible between Ada and the other lnré&agc. r and access
types are strongly recommended.

Pragma INlE{_{_FAJgE_S{’ELl@&

v

This implementation-defined pragma is used to specify the str}gslﬁ:r hich represents the name
of an externally known subprogram. The name of a subprogram writted in another language may
be an illegal Ada identifier. In that case, this pragma can be used to establish a correspondence
between the external name and the Ada identifier §pecified in a pragma INTERFACE. The form of
this pragma is shown below: _

pragma INTERFACE_SPELLING(subprogram_) literal);

Example:

pragma INTERFACE_SPELLING(sort, "A.SORT");

The identifier "sort" will be used within t “e“\zfsfdu“p;ogmm to refer to the external subprogram. The
compiler, however, will generate extern %‘. ergnces to "A.SORT".

This pragma is allowed atthie plaee of a declarative item and must apply to a subprogram declared
by an earlier pragma INNFERFACE.

Pragma LIST_

As in Ada Reference Manual.

Pragma MEMORY SIZE

Not supported.

Implementation Details 4.7 6/17/88 DY76-01

|

Pragma MULTI SEGMENT _DATA

This xmplemcmauon-dcﬁncd pragma affects the method of storage access, and hence, the amount
of static storage which is accessible to this compilation unit. This pragma allows the compilation
unit to access over 256K words of static storage. (The default limit on static siorage is 32K
words.) However, the access method is more costly when this pragma is spccxﬁcd. The form of
the pragma is shown below:

pragma MULTI_SEGMENT_DATA;

This pregma is allowed anywhere a pragma is allowed. It will affect

entcompilation unit
and any subsequent units in the same compilation. g

Pragma OPTIMIZE N

This pragma has no effect.

Pragma PACK ~——

This pragma affects only array types with a dxscrctc\%m\pt/LOVG _INTEGER) as component

type. The components of packed arrays are packed iniq(the ¢mallest possible fraction of a word,
where a fraction of a word consists of 1, 6,9, or 18 bi

Pragma PAGE /?\7
As in Ada Reference Manual. W

0\
Pragma PR{O}ITi

As in Ada Reference Ma%)\/

Pragma SHARED

Not supported.

Implementation Details 4-8 6/17/88 DY76-01

Pragma SINGLE _SEGMENT _DATA

This implementation-defined pragma affects the method of storage access, and hence, the amount
of static storage which is accessible to this compilation unit. This pragma allows the compilation
unit to access up to 256K words of static storage. (The default limit on static storage is 32K
words.) However, the access method is more costly when this pragma is specified. The form of
the pragma is shown below:

pragma SINGLE_SEGMENT_DATA;

This pragma is allowed anywhere a pragma is allowed. It will affect the compilation unit
and any subsequent units in the same compilaton. (

Prasma STORAGE UNIT />

Not supported.

Pragma SUPPRESS —

The implementation supports only the following formof4lieprdgma:

PRAGMA SUPPRESS (ideatifier);
Thus, it is not possible to restrict th @)n of a certain check to a specified name.

Pragma SYSTEM NAME
%

Not supported.

Address C%se,s
%

Not supported.

Machine Code Insertions

Not supported.

Implementation Details 4.9 6/17/88 DY76-01

——————]

SYSTEM

package SYSTEM is

type ADDRESS is access INTEGER,;

subtype PRIORITY is INTEGER range 1..15; /\

type NAME is (DPS8, DPS88, DPS8000, DPS90, DPSS008);

SYSTEM_NAME : constant NAME :=DPSS;

STORAGE_UNIT : constant := 36;
MEMORY_SIZE :constant =256 * 1024;

-- System-Dependent Named Numbers:
MIN_INT :constant :=long_integerPOS(lon
MAX_INT :constant :=long_integerPOS(lon

MAX _DIGITS :constant :=long_ float'digits;
MAX_MANTISSA : constant —@
ok f

FINE_DELTA :constant :#2. =
TICK :constant = O.Mo
type interface_language is (GMAPV, 1} L_85, PL_6, FORTRAN_77, C, GMAPV_ADA);

end SYSTEM;

integer'first);
nteger’last);

System-Supplied Program Units E-36 6/17/88 DY76-01

File: STANDARD.ADA '
Saved: 07-21-88 at 12:59:28 pm Page 1 !

- n . - - - - - - - - - - T A - - - - - - - - - e - - e - - -

-=- Date 29 july 1985

-- Programmer Svedn Bodilsen

-~ Project DDC Ada Compiler System

- GCOS~6 version

- Source text for predefined package STANDARD

-- Module STANDARDS.ADA

-- Description This source text is read by the package STANDARD builder.
-- Changes Initial version 29 March 1985

-=- Copyright 198
-=- This program

5 by Dansk Datamatik Center (DDC).
as well as any listing thereof may not

-- be reproduced in any form without prior permission
-- in writing from DDC.

- — - - —— > - - —— - —— - — -

FALSE

TRUE
-34_359_738_368
34_359_738_367
36

TRUE
-2_361_183_241_43
2.361_183_211_434
72

~- SHORT_INTEGER DEFINED

-- INTEGER DEFINED

-- INTEGER LOWER BOUND

-- INTEGER UPPER BOUND

-~ INTEGER BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT)

. -~ LONG_INTEGER DEFINED
4_822_606_848 -- LONG_INTEGER LOWER BOUND
_822_606_847 -- LONG_INTEGER UPPER BOUND

-- LONG_INTEGER BINARY DIGITS
-- (NUMBER OF BITS FOR EACH OBJECT)

FALSE -~ SHORT_FLOAT DEFINED
TRUE -- FLOAT DEFINED
6 -- FLOAT DIGITS

-1640.12E128
1640.FFFFFFE#E127
36

1640.FFFFFB#E127
16#0.84E-127

-- FLOAT LOWER BOUND
-- FLOAT UPPER BOUND
-- FLOAT BINARY DIGITS

-- (NUMBER OF BITS FOR EACH OBJECT)
-- FLOAT SAFE_LARGE
-- FLOAT SAFE_SMALL

508 -- FLOAT SAFE_EMAX

16 -- FLOAT MACHINE_RADIX

6 -~ FLOAT MACHINE_MANTISSA
127 -- FLOAT MACHINE_EMAX
-128 -- FLOAT MACHINE_EMIN

' File: STANDARD.ADA
! Saved: 07-21-88 at 12:59:28 pm Page 2

K o e e e e e e
TRUE -- FLOAT MACHINE_RQUNDS
TRUE -- FLOAT MACHINE_OVERFLOWS
TRUE -- LONG_FLOAT DEFINED
17 -- LONG_FLOAT DIGITS
-1640.14E128 -- LONG_FLOAT LOWER BOUND
16#0.FFFF_FFFF_FFFF_FFFE4E127 -~ LONG_FLOAT UPPER BOUND
72 -- LONG_FLOAT BINARY DIGITS
~=- (NUMBER OF BITS FOR EACH OBJECT)
16#0.FFFF_FFFF_FFFF_FFC#E127 -~ LONG_FLOAT SAFE_LARGE
1640.8%E-127 -- LONG_FLOAT SAFE_SMALL
508 -- LONG_FLOAT SAFE_EMAX
16 -- LONG_FLOAT MACHINE_RADIX
15 -- LONG_FLOAT MACHINE_MANTISSA
127 -- LONG_FLOAT MACHINE_EMAX
-128 -- LONG_FLOAT MACHINE_EMIN
TRUE -- LONG_FLOAT MACHINE_ROUNDS
TRUE -~ LONG_FLOAT MACHINE_OVERFLOWS
FALSE -- SHORT_FIXED DEFINED
TRUE -- FIXED DEFINED
-34_359_738_368 -- FIXED LOWER BOUND
34_359_738_367 -- FIXED UPPER BOUND
6 -- FIXED BINARY DIGITS
-- (NUMBER OF BITS FOR EACH OBJECT)
FALSE -- FIXED MACHINE_ROUNDS
TRUE -- FIXED MACHINE_OVERFLOWS
TRUE -~ LONG_FIXED DEFINED
-1_152_921_504_606_846_976 -- LONG_FIXED LOWER BOUND
1.152_921_504_606_846_975 -- LONG_FIXED UPPER BOUND
72 -~ LONG_FIXED BINARY DIGITS
-~ (NUMBER OF BITS FOR EACH OBJECT)
FALSE -~ LONG_FIXED MACHINE_ROUNDS
TRUE -~ LONG_FIXED MACHINE_OVERFLOWS
TRCE -- DURATION DEFINED
~1_099_511_627_776.0 -~ DURATION LOWER BOUND
1.099 _511_627_775.99999904632568359375 -- DURATION UPPER BOUND
0.000016 -~ DURATION DELTA
24#1.04E-20 -- DURATION SMALL
~-20 -~ DURATION SMALL_POWER
-~ (2**SMALL_POWER = SMALL)
72 -- DURATION BINARY DIGITS
-- (NUMBER OF BITS FOR EACH OBJECT)
FALSE -~ DURATION MACHINE_ROUNDS
TRUE -~ DURATION MACHINE_OVERFLOWS
36 -- BINARY DIGITS FOR ALL ENUMERATION TYPES

-- (NUMBER OF BITS FOR EACH OBJECT)

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation—dependent values,
such as the maximm length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 <1..248 => 'A', 249 => '1'>
Identifier the size of the
maximm input line length with
varying last character.

$BIG_ID2 <1..248 => 'A', 249 => '2'>
Identifier the size of the
maximm input line length with
varying last character.

$BIG_ID3 <1..124 => 'A', 125 => '3,
Identifier the size of the 126..249 = 'A'>
maximm input line length with
varying middle character.

$BIG_ID4 <1l..124 => 'A', 125 => '4°',
Identifier the size of the 126..249 => 'A'>
maximm input line length with
varying middle character.

$BIG_INT LIT <1..246 => '0', 247..249 =>
An integer literal of value 298 1298 '>
with encugh leading zeroces so
that it is the size of the
maximm line length.

$BIG_REAL LIT <1..244 => '0', 245..249 =>

A universal real literal of '69.00'>
value 690.0 with enough leading

zerces to be the size of the

maximumm line length.

o

$BIG_STRING1 "(124)A"
A string literal which when
catenated with BIG STRING2
yields the image of BIG ID1.

$BIG_STRING2 <1l = 'w 2,.,125 => 'A!,
A string literal which when 126 => ">
catenated to the end of
BIG STRING1 yields the image of
BIG_ID1.

$BLANKS <1..129 = ' '>
A sequence of blanks twenty
characters less than the size
of the maximm line length.

$COUNT_IAST 34359738367
A universal integer literal
whose value is
TEXT_IO.OOUNT'IAST.

SFIELD_IAST 75
A universal integer
literal whose value is
TEXT_IO.FIELD'IAST.

SFILE NAME WITH BAD CHARS F{*FILE
An extermal file name that
either contains invalid

characters or is too 1long.

$FILE_NAME WITH WILD CARD CHAR N234567890123
An external file name that
either ocontains a wild card

character or is too long.

SGREATER THAN DURATION 0.0
A universal real 1literal that
lies between DURATION'BASE'IAST
and DURATION'IAST or any value
in the range of DURATION.

SGREATER THAN DURATION_BASE LAST 1100000000000.0
A universal real literal that is
greater than DURATTION'BASE'LAST.
$ILLEGAL EXTERNAL FILE NAME1 FELENAME
An external file name which
contains invalid characters.

C-2

$SILIEGAL EXTERNAL FILE] NAME2
An external file name which
is too lang.

SINTEGER FIRST
A universal integer literal
whose value is INTBEGER'FIRST.

SINTEGER_IAST
A universal integer literal
whose value is INTEGEK'LAST.

SINTEGER _IAST PIUS_1
A universal integer literal
whose value is INTEGER'IAST + 1.

$LESS_THAN DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the rarge of DURATION.

SLESS THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SMAX DIGITS
Maximm digits supported for

floating-point types.

SMAX_IN_ IEN
Maxdmum input 1line length
permitted by the implementation.

$MAX_INT

A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX_INT PIUS 1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX_LEN INT BASED LITERAL
A universal integer based
literal whose value is 24114
with enough leading zerces in
the mantissa to be MAX IN LEN
long.

C-3

NAMETOLCNGFORFILENAME

=34359738368

34359738367

34359738368

0.0

-1100000000000.0

17

249

2361183241434822606847

2361183241434822606848

<1..244 =
248114'>

'0', 245..249 =

SMAX_LEN_REAIL, BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zerces in the
mantissa to be MAX IN IEN long.

SMAX_STRING LITERAL
A string literal of size
MAX IN IEN, including the quote
characters.

SMIN_INT
A universal integer 1literal
whose value is SYSTEM.MIN _INT.

$NAME
A name of a predefined mmeric
type other than FLOAT, INTEGER,
SHORT FIQAT, SHORT INTEGER,
IONG FIQAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero Dbit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

<1..242 => '0', 243..249 =
'164#F.E#'>

<1..247 = 'X'>

=2361183241434822606848

no_such_type

164FFFFFFFFFFFFFFFEFF#

APPENDIX D
WITHDRAKWN TESTS

Same tests are withdrawn fram the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Cammentary.

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

C35904B:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaration (line 36) wrangly follows a later
declaration.

This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERRCR.

Equality operators in lines 62 & 69 should be inequality
operators.

Line 17's assigmment of the nomimal upper bound of a
fixed-point type to an oabject of that type raises
CONSTRAINT ERRCR, for that value lies autside of the actual
rarge of the type.

The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that 1is expected to raise
CONSTRAINT ERRCR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or OCONSTRAINT ERROR for reasons not
anticipated by the test.

These tests assume that attribute 'MANTISSA returns O when
applied to a fixed-point type with a mull range, but the Ada
Standard doesn't support this assumption.

The subtype declaration of SCOONS in 1line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT ERROR.

D~1

C37215C,
E, G, H:
C38102C:

C41402A:

C45332A:

C45614C:

E66001D:

A74106C,

C85018B,

C87B04B,
CC1311B:

BC3105A:

ADIAO1A:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incampatible with type CONS.

The fixed-point oconversion an 1line 23 wrongly raises
OONSTRAINT ERRCR.

'STORAGE SIZE is wrongly applied to an cbject of an access
type.

The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS 1is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the cperands, and MACHINE OVERFLOWS may still be TRUE.

REPORT.IDENT INT has an argument of the wrong type
(LONG_INTEGER) .

This test wrongly allows either the acceptance or rejection of
a parameterless function with the same identifier as an
emmeration literal; the function must be rejected (see
Cammentary AI-00330).

A bourd specified in a fixed-point subtype declaration

lies autside of that calculated for the base type, raising
CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (arnd possibly elsewhere).

Lines 159..168 are wrongly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values,

This test expects that an attempt to open the default cutput
file (after it was closed) with mode IN FILE raises NAME ERROR

or USE ERROR; by Cammentary AI-00048, MODE ERROR should be
raised.

D=2

